
GEOPHYSICAL MODEL OF MASSIVE SULFIDE DEPOSITS

COX AND SINGER MODEL Nos. 24a, 24b, 28a Compiler - W.D. Heran

A. Geologic Setting
Three major deposit types are included:

ŽCyprus - hosted in marine mafic extrusive rocks
ŽBesshi - hosted in marine mafic extrusive rocks
ŽKuroko - hosted in marine felsic to mafic extrusive rocks

Cyprus Massive Sulfide: Within ophiolite assemblage, commonly above diabase
dikes localized within pillow basalts or mafic volcanic breccia. Deposits are
podlike massive, iron, copper and zinc sulfides with an underlying sulfide
stringer zone. May be adjacent to steep normal faults and overlain by Fe-rich
bedded marine sediments (ochre).

Besshi Massive Sulfide: Possibly related to submarine hot springs and
associated basaltic volcanism within rifted basin of volcanic island arc or
back arc setting. Usually hosted in thinly laminated elastic terrigenous
sediments or mafic tuffs. Deposits are thin, sheetlike bodies of massive to
well-laminated sulfides, laterally extensive and tend to cluster in en echelon
patterns. All known deposits occur in strongly deformed metamorphic terranes.

Kuroko Massive Sulfide: Within calc-alkaline volcanic island arc systems and
Archean greenstone belts. Common near center and felsic top of volcanic-
sedimentary sequence with tendency to occur in close proximity to each other
or clusters. Pyritic siliceous rock (exhalite) may be marker horizon.
Distinctly vertically zoned, massive copper- and zinc-sulfide bearing,
stratiform body with underlying veins and stockwork of disseminated sulfides.

Note: all three types upon weathering may produce yellow, red and brown
limonitic gossans.

B. Geologic Environment Definition
Remote sensing methods can help detect and map the extent of ultramafic

belts and intrusive complexes by overall reflectance (albedo), thermal
properties and geobotanical changes (Barrington, 1991; Longshaw and
Gilbertson, 1975). Landsat TM data have been utilized to map and subdivide
units of the Semail ophiolite in Oman (Abrams, 1987). Landsat TM data have
been used on a regional and local scale to recognize syn- and post-volcanic
structures, including first and second-order lineament faults and shear zones
in Canadian greenstone belts (Carboni and others, 1991). TM data were used to
map lithologies, limonitic and gossan surfaces and integrated with
panchromatic air photos providing structural data and locations of volcanic
centers (Volk and others, 1987). Aircraft multispectral scanner data have
successfully mapped the distribution of iron-oxide species over known gossan
outcrop in Australia (Fraser and others, 1987).

Aeromagnetic and regional gravity data have been used to define
tectonic terranes in northern Michigan and Wisconsin (Klasner and others,
1985) . High-resolution aeromagnetic surveys were useful in interpreting
Precambrian bedrock beneath glacial cover in Minnesota (Chandler, 1985).
Enhanced high resolution aeromagnetic and VLF data were utilized to map
lithology and regional faults in the central volcanic belt near Buchans,
Newfoundland (Kilfoil, 1989). Ophiolite belts are characterized by
aeromagnetic data as en echelon belts of short wavelength, high gradient
anomalies (Heinz, 1989), and chains of narrow local positive and negative
anomalies (Menaker, 1981) . Greenstone belts may be defined in aeromagnetic
surveys as a regional magnetic low if the belt is magnetite-deficient, in
other cases a high if it is magnetite-rich (Grant, 1985; Isles, Harman and
Cunneen, 1988). A statistical analysis of regional magnetic and gravimetric
parameters were used to evaluate regional deposit potential in greenstone
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areas in Canada (Favini and Assad, 1974). Regional gravity was used to define
thrust faults in an island-arc terrane in Canada (Wilson and Brisbin, 1960).
Airborne electromagnetic surveys have been widely used in favorable terrains
for finding conductors (Seigel, 1977; Klein and Lajoie, 1992; Ward, 1967;
1970) and can be credited for the discovery of numerous massive sulfide
deposits in Canada (Paterson, 1966; 1967; Fleming and Brooks, 1960; Mackay and
Paterson, 1959; Podolsky, 1966) and Wisconsin (Schnenk, 1977; May and Schmidt,
1982; Mudrey and others, 1991).

C. Deposit Definition
Massive sulfide bodies are defined as a single mass containing between

50-80% metallic sulfide minerals. This fact almost always lends to a higher
electrical contrast relative to its host. A variety of ground EM methods have
been successfully applied, as follow-up to airborne surveys, including the
frequency and time domain methods utilizing a broad band of frequencies and
employing several coil configurations (Ward, 1966, 1979; Crone, 1966, 1979;
and Strangway, 1966; McCracken, 1981; Klein and Jajoie, 1992; Zonge, 1992;
Sinha and Stephens, 1987). Other electrical methods such as SP (Cifali and
Whiteley, 1981; Moss and Perkins, 1981), resistivity (Quick and Cifali, 1981;
Tyne and Whiteley, 1981), and IP (Hallof, 1966; 1992) have been widely used to
locate and define deposit parameters. The presence of pyrhotite and/or
magnetite in the mineral assemblage of the deposit (not always present) may
cause a magnetic contrast with the host rock. Ground magnetic surveys are
commonly used (Hood and others, 1979) if a subtle or strong airborne magnetic
anomaly is obtained, to locate or outline ore zones. The magnetic method is
credited for the discovery of the Pima ore body in Arizona (Heinrichs and
Thurmond, 1956). Another inherent physical property of the massive sulfide is
high density of the ore minerals. The gravity method although not normally
used as a primary tool can play an important role in an integrated effort to
check EM or electrical anomalies (Tanner and Gibb, 1979; West, 1992; Boyd and
others, 1975; Barbour and Thurlow, 1982), outline the deposit, or estimate ore
reserves (Templeton, 1981). A 2.8 mgal anomaly was obtained over the Faro
deposit NWT Canada (Brock, 1973). Seismic refraction and reflection surveys
have been used to map fault structures (Spencer and others, 1993) map ore
zones (Cooksley, 1992) and as a screening method to distinguish between
shallow orebodies and conductive shales or graphite zones (Hawkins and
Whitely, 1981). Downhole electrical and gamma radiation methods were used at
the Woodlawn deposit, Australia to effectively outline the deposit and log
lithologies (Templeton and others, 1981; Hone and Young, 1981).

D.

E.

1.

2.

Size and Shape of Shape Average Size/Range

Deposit lenticular to sheetlike; 8.2x105m3/5.1x104-8.7x106m3

stringer, stockwork

Alteration stringer zone or
blanketing

Physical Properties Deposit Alteration Host
(units)

Density 3.9, 3-4.5(2) *

(gm/cc)

Porosity .35, .2-.5(2)

(%)
*
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3.

4.

5.

6.

-7.

8.

F.

Susceptibility
(10-6 cgs)

1200, 0-5400(2)

Remanence .8, .2-1.0(32)

(mA/m)

Resistivity 1, .01-62
(ohm-m )

IP Effect
chargeability 45, 16-125(2)

(mv-sec/v)
percent freq.
effect (PFE) 5, 0-200(32)

Seismic Velocity 1.4, 1.1-1.8(32)

km/sec 3.2(10)

Radiometric

K (%) low-moderate
U (ppm) low
Th (ppm) low

Remote Sensing Characteristics

*

*

*

*

*

*

*
*
*

Visible and near IR: Iron-oxide species (goethite, hematite, etc.) have
unique reflectance spectra and can be distinguished from other alteration or
weathering products (Hunt, 1979). Near-infrared spectra (800-2500 nm) have
been utilized to distinguish true and false gossans (Raines and others, 1985).
Color composite images from Landsat MSS band ratio data have been used to
successfully map ferric iron-bearing rocks (Segal, 1983). Airborne
multispectral scanners have been applied to map rock types, soils, alteration
and gossans in Australia (Fraser and others, 1987; Honey and Daniels 1986).

G. Comments
Ground follow-up surveys following regional exploration must eliminate

extraneous sources of anomalies such as conductive graphitic zones. The
choice of techniques to apply first will vary depending on host environment,
minerals present, structural controls and target depth. The normally high
electrical conductivity of massive sulfides makes the electrical or
electromagnetic methods most frequently used (Ward, 1966). The
electromagnetic method has been successfully used since the early 1920’s
(Ward, 1979; Moss and Perkins, 1981). Gravity, magnetics and seismic methods
are commonly used in an integrated exploration program. In general massive
sulfide bodies are very dense, typically very conductive and frequently
magnetic (Ward, 1966). Several geophysical case histories to note are:  SEG
Mining Geophysics, 1966; Case Histories
1991; and Geophysical Case Study of the
Australia, 1981.

of Mineral Discoveries, v. 3, AIME,
Woodlawn orebody, New S. Wales,
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Figure 1. Three-frequency airborne electromagnetic (AEM), and magnetic data
over the New Insco massive sulfide deposit, Quebec, Canada. 
(modified from Becker, 1979)
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Figure 2. Electromagnetic data (horizontal loop and filtered VFL) and
Bouguer gravity profile over the Tulks East massive sulfide,
Newfoundland.  (modified from Barbour and Thurlow, 1982)
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Figure 3. Electrical surveys over the Woodlawn orebody.  New South Wales,
Australia.  (A) Induced Polarization (IP) using gradient array in
both time and frequency domain.  (B) Self-potential profile
showing an intense negative anomaly with a magnitude of about 300
mV.  (modified from Cifali and Whitely, 1981; Tyne and Whitely,
1981)
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Figure 4. Drill hole electrical (frequency effect, apparent resistivity,
single point resistance, self-potential) and gamma radiation logs
along with drill core lithology from hole U256, Woodlawn orebody,
New South Wales, Australia.  (modified from Hone and Young, 1981)
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